Associação entre Terapia Fotodinâmica antimicrobiana e Nanotecnologia: Revisão Sistemática e Meta-análise

Autores

  • Iago Ramirez Mestrando pelo Programa de Pós-Graduação em Odontologia Restauradora, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo (USP) 14040-904 Ribeirão Preto – SP, Brasil https://orcid.org/0000-0001-8266-1352
  • Lélio Fernando Ferreira Soares Mestrando pelo Programa de Pós-Graduação em Ciências Odontológicas (PPGCO), Universidade Federal de Alfenas (UNIFAL) 37130-001 Alfenas – MG, Brasil https://orcid.org/0000-0003-4174-2943
  • Victor Alves Nascimento Mestrando pelo Programa de Pós-Graduação em Odontologia, Área de Concentração em Prótese Dentária, Faculdade de Odontologia de Araçatuba, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) 16015-050 Araçatuba – SP, Brasil https://orcid.org/0000-0002-8190-2297
  • Caio Luiz Bitencourt dos Reis Doutorando pelo Programa de Pós-Graduação em Odontopediatria, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo (USP) 14040-904 Ribeirão Preto – SP, Brasil https://orcid.org/0000-0003-0606-1632
  • Ana Claudia Pedreira de Almeida Professora Associada, Departamento de Clínica e Cirurgia, Faculdade de Odontologia, Universidade Federal de Alfenas (UNIFAL) 37130-001 Alfenas – MG, Brasil https://orcid.org/0000-0003-3740-3834
  • Daniela Silva Barroso de Oliveira Professora Associada, Departamento de Clínica e Cirurgia, Faculdade de Odontologia, Universidade Federal de Alfenas (UNIFAL) 37130-001 Alfenas – MG, Brasil https://orcid.org/0000-0003-2691-1411

DOI:

https://doi.org/10.21270/archi.v12i1.5816

Palavras-chave:

Nanotecnologia, Terapia Fotodinâmica, Odontologia, Microbiologia

Resumo

A terapia fotodinâmica antimicrobiana (aPDT) tem se apresentado como uma terapia complementar de grande eficiência no contexto odontológico. Em diferentes especialidades odontológicas tem se mostrado útil como fator de redução de carga microbiana. Recentemente foi sugerida a associação entre essa terapia e a utilização de nanopartículas e nanotecnologia em geral. Assim, essa revisão sistemática buscou avaliar qual o desfecho geral dessa associação no contexto odontológico. Foi realizada busca em oito bases de dados virtuais, foram estabelecidos critérios de elegibilidade conforme estratégia PICO, e confeccionado fluxograma PRISMA para apresentação da seleção da amostra narrativa e quantitativa. De 930 resultados foram selecionados 27 para síntese narrativa e 4 para a quantitativa. O risco de viés foi acessado por meio de adaptação da ferramenta SYRCLE, e foi confeccionada uma tabela agrupando os dados de interesse para as sínteses. O delineamento mais incidente foi de ensaios in vitro, em que se percebeu também diferentes protocolos de utilização da aPDT, e uma grande variedade de nanotecnologias associadas. O risco de viés apontou algumas respostas inconclusivas, devido à própria ferramenta SYRCLE e sua relação deficiente com os diferentes delineamentos incluídos. A síntese narrativa e a síntese quantitativa apresentaram desfecho favorável à associação entre aPDT e a nanotecnologia, especialmente na redução de microrganismos de interesse endodôntico e periodontal comuns em casos de infecções persistentes e/ou recorrentes. Contudo, mesmo com resultados promissores, mais estudos são necessários para trazer robustez necessária para a inferência dessa relação satisfatória à prática odontológica clínica.

Downloads

Não há dados estatísticos.

Referências

Allison RR, Moghissi K. Photodynamic Therapy (PDT): PDT Mechanisms. Clin Endosc. 2013;46(1):24-9.

Dharmaratne P, Sapugahawatte DN, Wang B, Chan CL, Lau KM, Lau CB, et al. Contemporary approaches and future perspectives of antibacterial photodynamic therapy (aPDT) against methicillin-resistant Staphylococcus aureus (MRSA): A systematic review. Eur J Med Chem. 2020;200:112341.

Al-Shammery D, Michelogiannakis D, Ahmed ZU, Ahmed HB, Rossouw PE, Romanos GE, et al. Scope of antimicrobial photodynamic therapy in Orthodontics and related research: A review. Photodiagnosis Photodyn Ther. 2019;25:456-59.

Albaker AM, ArRejaie AS, Alrabiah M, Abduljabbar T. Effect of photodynamic and laser therapy in the treatment of peri-implant mucositis: A systematic review. Photodiagnosis Photodyn Ther. 2018;21:147-52.

Fumes AC, da Silva Telles PD, Corona SAM, Borsatto MC. Effect of aPDT on Streptococcus mutans and Candida albicans present in the dental biofilm: Systematic review. Photodiagnosis Photodyn Ther.2018;21:363-66.

Joseph B, Janam P, Narayanan S, Anil S. Is Antimicrobial Photodynamic Therapy Effective as an Adjunct to Scaling and Root Planing in Patients with Chronic Periodontitis? A Systematic Review. Biomolecules. 2017;7(4):79.

Li Y, Wang B, Zheng S, He Y. Photodynamic therapy in the treatment of oral leukoplakia: A systematic review. Photodiagnosis Photodyn Ther. 2019;25:17-22.

Pourhajibagher M, Hosseini N, Boluki E, Chiniforush N, Bahador A. Photoelimination Potential of Chitosan Nanoparticles-Indocyanine Green Complex Against the Biological Activities of Acinetobacter baumannii Strains: A Preliminary In Vitro Study in Burn Wound Infections. J Lasers Med Sci. 2020;11(2):187-92.

Romano A, Di Stasio D, Lauritano D, Lajolo C, Fiori F, Gentile E, Lucchese A. Topical photodynamic therapy in the treatment of benign oral mucosal lesions: A systematic review. J Oral Pathol Med. 2021;50(7):639-48.

Qi M, Chi M, Sun X, Xie X, Weir MD, Oates TW, et al. Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases. Int J Nanomedicine. 2019;14:6937-6956.

Sabino CP, Wainwright M, Ribeiro MS, Sellera FP, Dos Anjos C, Baptista MDS, Lincopan N. Global priority multidrug-resistant pathogens do not resist photodynamic therapy. J Photochem Photobiol B. 2020;208:111893.

Mylona V, Anagnostaki E, Parker S, Cronshaw M, Lynch E, Grootveld M. Laser-Assisted aPDT Protocols in Randomized Controlled Clinical Trials in Dentistry: A Systematic Review. Dent J (Basel). 2020;8(3):107.

Daliri F, Azizi A, Goudarzi M, Lawaf S, Rahimi A. In vitro comparison of the effect of photodynamic therapy with curcumin and methylene blue on Candida albicans colonies. Photodiagnosis Photodyn Ther. 2019;26:193-98.

Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O, Kotowski K, Kulbacka J. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098-107.

Plotino G, Grande NM, Mercade M. Photodynamic therapy in endodontics. Int Endod J. 2019;52(6):760-74.

Mondal D, Bera S. Porphyrins and phthalocyanines: Promising molecules for light-triggered antibacterial nanoparticles. Adv Nat Sci Nanosci Nanotechnol. 2014;5(3):033002.

Aziz ZAA, Mohd-Nasir H, Ahmad A, Mohd Setapar SH, Peng WL, Chuo SC, et al. Role of Nanotechnology for Design and Development of Cosmeceutical: Application in Makeup and Skin Care. Front Chem. 2019;7:739.

Ramos AP, Cruz MAE, Tovani CB, Ciancaglini P. Biomedical applications of nanotechnology. Biophys Rev. 2017;9(2):79-89.

Chen BH, Stephen Inbaraj B. Nanoemulsion and Nanoliposome Based Strategies for Improving Anthocyanin Stability and Bioavailability. Nutrients. 2019;11(5):1052.

Schuenck-Rodrigues RA, de Oliveira de Siqueira LB, dos Santos Matos AP, da Costa SP, da Silva Cardoso V, Vermelho AB, et al. Development, characterization and photobiological activity of nanoemulsion containing zinc phthalocyanine for oral infections treatment. J Photochem Photobiol B; 2020;211:112010, 2020.

Soemari YB, Sapri Maghfiroh F, Yuniarti, Achaditani NM, Variani R, Tsabitah AF, et al. Fungsi – Fungsi Keluarga Dengan Hasil Pengobatan Tuberculosis Program Dots. J Chem Inform Model. 2020;2(1):5–7.

Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M. PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.

Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE's risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14:43.

Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557-60.

Borenstein M, Higgins JP, Hedges LV, Rothstein HR. Basics of meta-analysis: I2 is not an absolute measure of heterogeneity. Res Synth Methods. 2017;8(1):5-18.

Trigo Gutierrez JK, Zanatta GC, Ortega ALM, Balastegui MIC, Sanitá PV, Pavarina AC, et al Encapsulation of curcumin in polymeric nanoparticles for antimicrobial Photodynamic Therapy. PLoS One. 2017;12(11):e0187418

Trigo-Gutierrez JK, Sanitá PV, Tedesco AC, Pavarina AC, Mima EGO. Effect of Chloroaluminium phthalocyanine in cationic nanoemulsion on photoinactivation of multispecies biofilm. Photodiagnosis Photodyn Ther. 2018;24:212-219.

Zhang T, Ying D, Qi M, Li X, Fu L, Sun X, Wang L, et al. Anti-Biofilm Property of Bioactive Upconversion Nanocomposites Containing Chlorin e6 against Periodontal Pathogens. Molecules. 2019;24(15):2692.

Sasaki Y, Hayashi JI, Fujimura T, Iwamura Y, Yamamoto G, Nishida E, et al. M. New Irradiation Method with Indocyanine Green-Loaded Nanospheres for Inactivating Periodontal Pathogens. Int J Mol Sci. 2017;18(1):154.

Wilson M. Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infections. Photochem Photobiol Sci. 2004;3(5):412-8.

Nagahara A, Mitani A, Fukuda M, Yamamoto H, Tahara K, Morita I, et al. Antimicrobial photodynamic therapy using a diode laser with a potential new photosensitizer, indocyanine green-loaded nanospheres, may be effective for the clearance of Porphyromonas gingivalis. J Periodontal Res. 2013;48(5):591-9.

Cisalpino PS, Magalhaes PP, Farias L de M, Pinotti M. Evaluation of polymeric PLGA nanoparticles conjugated to curcumin for use in aPDT. Braz J Pharm Sci. 2017;53(2).

Pourhajibagher M, Ghorbanzadeh R, Bahador A. Antimicrobial properties of acrylic resins doped with Undaria pinnatifida exposed to light-emitting diode: In silico and in vitro assessments on multispecies biofilm-producing microbiota. Photodiagnosis Photodyn Ther. 2019;27:210-15.

Perni S, Piccirillo C, Kafizas A, Uppal M, Pratten J, Wilson M, et al. Antibacterial Activity of Light-Activated Silicone Containing Methylene Blue and Gold Nanoparticles of Different Sizes. J. Clust. Sci. 2010;21:427-38.

Pourhajibagher M, Rahimi Esboei B, Hodjat M, Bahador A. Sonodynamic excitation of nanomicelle curcumin for eradication of Streptococcus mutans under sonodynamic antimicrobial chemotherapy: Enhanced anti-caries activity of nanomicelle curcumin. Photodiagnosis Photodyn Ther. 2020;30: 101780.

Ribeiro AP, Andrade MC, Bagnato VS, Vergani CE, Primo FL, Tedesco AC, et al. Antimicrobial photodynamic therapy against pathogenic bacterial suspensions and biofilms using chloro-aluminum phthalocyanine encapsulated in nanoemulsions. Lasers Med Sci. 2015;30(2):549-59.

Afrasiabi S, Pourhajibagher M, Chiniforush N, Bahador A. Propolis nanoparticle enhances the potency of antimicrobial photodynamic therapy against Streptococcus mutans in a synergistic manner. Scientific Reports. 2020;10(1);1-16.

Boluki E, Pourhajibagher M, Bahador A. The combination of antimicrobial photocatalysis and antimicrobial photodynamic therapy to eradicate the extensively drug-resistant colistin resistant Acinetobacter baumannii. Photodiagnosis Photodyn Ther. 2020;31:101816.

Zhang T, Ying D, Qi M, Li X, Fu L, Sun X, et al. Anti-Biofilm Property of Bioactive Upconversion Nanocomposites Containing Chlorin e6 against Periodontal Pathogens. Molecules. 2019;24(15):2692.

Nagahara A, Mitani A, Fukuda M, Yamamoto H, Tahara K, Morita I, et al. Antimicrobial photodynamic therapy using a diode laser with a potential new photosensitizer, indocyanine green-loaded nanospheres, may be effective for the clearance of Porphyromonas gingivalis. J Periodontal Res. 2013;48(5):591-99.

Afkhami F, Akbari S, Chiniforush N. Entrococcus faecalis Elimination in Root Canals Using Silver Nanoparticles, Photodynamic Therapy, Diode Laser, or Laser-activated Nanoparticles: An In Vitro Study. J Endod. 2017;43(2):279-82.

Rad MR, Pourhajibagher M, Rokn AR, Barikani HR, Bahador A. Effect of Antimicrobial Photodynamic Therapy Using Indocyanine Green Doped with Chitosan Nanoparticles on Biofilm Formation-Related Gene Expression of Aggregatibacter actinomycetemcomitans. Front Dent. 2019;16(3):187-93.

Pourhajibagher M, Rokn AR, Barikani HR, Bahador A. Photo-sonodynamic antimicrobial chemotherapy via chitosan nanoparticles-indocyanine green against polymicrobial periopathogenic biofilms: Ex vivo study on dental implants. Photodiagnosis Photodyn Ther. 2020;31:101834.

Shrestha A, Hamblin MR, Kishen A. Photoactivated rose bengal functionalized chitosan nanoparticles produce antibacterial/biofilm activity and stabilize dentin-collagen. Nanomedicine. 2014;10(3):491-501.

Cavalcante LLR, Tedesco AC, Unten Takahashi LA, Curylofo-Zotti FA, Souza-Gabriel AE, Milori Corona SA. Conjugate of chitosan nanoparticles with chloroaluminium phthalocyanine: synthesis, characterization and photoinactivation of Streptococcus mutans biofilm. Photodiagnosis Photodyn Ther. 2020:101709.

de Oliveira AB, Ferrisse TM, Marques RS, de Annunzio SR, Brighenti FL, Fontana CR. Effect of Photodynamic Therapy on Microorganisms Responsible for Dental Caries: A Systematic Review and Meta-Analysis. Int J Mol Sci. 2019;20(14):3585.

Gholibegloo E, Karbasi A, Pourhajibagher M, Chiniforush N, Ramazani A, Akbari T,et al. Carnosine-graphene oxide conjugates decorated with hydroxyapatite as promising nanocarrier for ICG loading with enhanced antibacterial effects in photodynamic therapy against Streptococcus mutans. J Photochem Photobiol B. 2018;181:14-22.

Carmello JC, Alves F, Basso FG, de Souza Costa CA, Tedesco AC, Lucas Primo F, et al. Antimicrobial photodynamic therapy reduces adhesion capacity and biofilm formation of Candida albicans from induced oral candidiasis in mice. Photodiagnosis Photodyn Ther. 2019;27:402-7.

Robbins N, Uppuluri P, Nett J, Rajendran R, Ramage G, Lopez-Ribot JL, et al. Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog. 2011;7(9):e1002257

Ellepola AN, Joseph BK, Khan ZU. Changes in the cell surface hydrophobicity of oral Candida albicans from smokers, diabetics, asthmatics, and healthy individuals following limited exposure to chlorhexidine gluconate. Med Princ Pract. 2013;22(3):250-4.

Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25(2):134-44.

Vasconcelos MEOC, Cardoso AA, da Silva JN, Alexandrino FJR, Stipp RN, Nobre-Dos-Santos M, et al. Combined Effectiveness of β-Cyclodextrin Nanoparticles in Photodynamic Antimicrobial Chemotherapy on In Vitro Oral Biofilms. Photobiomodul Photomed Laser Surg. 2019;37(9):567-73.

Gao X, Guo L, Li J, Thu HE, Hussain Z. Nanomedicines guided nanoimaging probes and nanotherapeutics for early detection of lung cancer and abolishing pulmonary metastasis: Critical appraisal of newer developments and challenges to clinical transition. J Control Release. 2018;292:29-57.

DaSilva L, Finer Y, Friedman S, Basrani B, Kishen A. Biofilm formation within the interface of bovine root dentin treated with conjugated chitosan and sealer containing chitosan nanoparticles. J Endod. 2013;39(2):249-53.

Sakima VT, Barbugli PA, Cerri PS, Chorilli M, Carmello JC, Pavarina AC, et al. Antimicrobial Photodynamic Therapy Mediated by Curcumin-Loaded Polymeric Nanoparticles in a Murine Model of Oral Candidiasis. Molecules. 2018;23(8):2075.

Rad MR, Pourhajibagher M, Rokn AR, Barikani HR, Bahador A. Effect of Antimicrobial Photodynamic Therapy Using Indocyanine Green Doped with Chitosan Nanoparticles on Biofilm Formation-Related Gene Expression of Aggregatibacter actinomycetemcomitans. Front Dent. 2019;16(3):187-93.

Kim MM, Darafsheh A. Light Sources and Dosimetry Techniques for Photodynamic Therapy. Photochem Photobiol. 2020;96(2):280-94.

Publicado

2023-01-30

Como Citar

Ramirez, I., Soares, L. F. F., Nascimento, V. A., Reis, C. L. B. dos, Almeida, A. C. P. de, & Oliveira, D. S. B. de. (2023). Associação entre Terapia Fotodinâmica antimicrobiana e Nanotecnologia: Revisão Sistemática e Meta-análise. ARCHIVES OF HEALTH INVESTIGATION, 12(1), 33–48. https://doi.org/10.21270/archi.v12i1.5816

Edição

Seção

Original Articles