Nanotechnology in Dentistry
DOI:
https://doi.org/10.21270/archi.v6i11.2279Abstract
Introduction: Nanotechnology is a rapidly expanding field that encompasses the development, manipulation, and application of structures on the nanometer scale. Applications of nanotechnology to dentistry are particularly promising and comprise materials and devices designed to achieve maximal therapeutic efficacy with minimal side effects. Objective: This review discusses the advantages of nanotechnology and the different types of nanostructures used in dentistry. Material and Method: In this study, online databases: pubmed, medline and scielo were searched to analyse the current understanding of the potential of nanotechnology in dentistry, including the restoration of tooth structure with nanocomposites and the development of nanoparticles for dentin remineralisation, drug delivery, disease diagnostics, oral analgesia, oral hygiene maintenance, local anaesthesia, tooth desensitisation, and bone tissue repair. Results: The study demonstrated a wide range of nanotechnological strategies in different dentistry areas and suggests that nanotechnology-based delivery systems may be very useful to improve treatment, prevention and repair in dentistry in the future. Conclusion: There is little or no clinical experience for the nanotechnology-based drug delivery systems cited herein. Safety assessments and clinical trials are the next step in their development.Descriptors: Nanotechnology; Dental Research; Biocompatible Materials.
Downloads
References
Emerich DF, Thanos CG. Nanotechnology and medicine. Expert Opin Biol Ther. 2003; 3(4):655-63.
Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today. 2003; 8(24):1112-20.
Heath JR, Davis ME. Nanotechnology and cancer. Annu Rev Med. 2008; 59:251-65.
Heath JR, Phelps ME, Hood L. NanoSystems biology. Mol Imaging Biol. 2003; 5(5):312-25.
Ricci-Júnior E, Marchetti JM. Zinc(II) phthalocyanine loaded PLGA nanoparticles for photodynamic therapy use. Int J Pharm. 2006; 310(1-2):187-95.
Chen L, Henein G, Luciani V. Nanofabrication techniques for controlled drug-release devices. Nanomedicine (Lond). 2011; 6(1):1-6.
Vallet-Regí M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Ed Engl. 2007; 46(40):7548-58.
Legrand P, Barrat G, Mosqueira VCF, Fessi H, Devissaguet JP. Polymeric nanocapsules as drug delivery systems: A review. STP Pharma Sciences. 1999; 9:411-8.
Mosqueira VC, Legrand P, Morgat JL, Vert M, Mysiakine E, Gref R et al. Biodistribution of long-circulating PEG-grafted nanocapsules in mice: effects of PEG chain length and density. Pharm Res. 2001;18(10):1411-9.
Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm. 2000; 50(1):161-77.
New RRC. Liposomes: A Practical Approach. 1st ed. Oxford: Oxford University Press; 1990.
Nguyen S, Hiorth M, Rykke M, Smistad G. The potential of liposomes as dental drug delivery systems.
Eur J Pharm Biopharm. 2011;77(1):75-83.
Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998; 281(5385):2013-6.
Quintana A, Raczka E, Piehler L, Lee I, Myc A, Majoros I et al. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res. 2002; 19(9):1310-6.
Porter AE, Gass M, Muller K, Skepper JN, Midgley PA, Welland M. Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol. 2007;2(11):713-7.
Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O et al. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes. Nano Lett. 2005; 5(9):1676-84.
Ure D, Harris J. Nanotechnology in dentistry: reduction to practice. Dent Update. 2003; 30(1):10-5.
Elkassas D, Arafa A. The innovative applications of therapeutic nanostructures in dentistry. Nanomedicine 2017; 13(4):1543-62.
Senawongse P, Pongprueksa P. Surface roughness of nanofill and nanohybrid resin composites after polishing and brushing. J Esthet Restor Dent. 2007;19(5):265-73.
Xu HH, Weir MD, Sun L, Moreau JL, Takagi S, Chow LC et al. Strong nanocomposites with Ca, PO(4), and F release for caries inhibition. J Dent Res. 2010; 89(1):19-28.
Moreau JL, Sun L, Chow LC, Xu HH. Mechanical and acid neutralizing properties and bacteria inhibitionn of amorphous calcium phosphate dental nanocomposite. J Biomed Mater Res B Appl Biomater. 2011;98(1):80-8.
Durner J, Stojanovic M, Urcan E, Hickel R, Reichl FX. Influence of silver nano-particles on monomer elution from light-cured composites. Dental Mater. 2011; 27(7):631-6.
Taha DG, Abdel-Samad AA, Mahmoud SH. Fracture resistance of maxillary premolars with class II MOD cavities restored with Ormocer, Nanofilled, and Nanoceramic composite restorative systems. Quintessence Int. 2011; 42(7):579-87.
Singh S, Pandey RK. An evolution of nanocomposites as pit and fissure sealants in child patients. J Ind Soc Pedod Prev Dent. 2011; 29(4):294-9.
Neelakantan P, John S, Anand S, Sureshbabu N, Subbarao C. Fluoride release from a new glass-ionomer cement. Oper Dent. 2011; 36(1):80-5.
Weir MD, Moreau JL, Levine ED, Strassler HE, Chow LC, Xu HH. Nanocomposite containing CaF(2) nanoparticles: thermal cycling, wear and long-term water-aging. Dent Mater. 2012; 28(6):642-52.
Moszner N, Klapdohr S. Nanotechnology for dental composites. Int J Nanotechnology. 2004;1(1-2):130-56.
Mousavinasab SM, Atai M, Alavi B. To compare the microleakage among experimental adhesives containing nanoclay fillers after the storages of 24 hours and 6 months. Open Dent J. 2011; 5:52-7.
Beyth N, Domb AJ, Weiss EI. An in vitro quantitative antibacterial analysis of amalgam and composite resins. J Dent. 2007; 35(3):201-6.
Busscher HJ, Rinastiti M, Siswomihardjo W, van der Mei HC. Biofilm formation on dental restorative and implant materials. J Dent Res. 2010; 89(7):657-65.
Mocanu A, Furtos G, Rapuntean S, Horovitz O, Flore C, Garbo C, et al. Synthesis; characterization and antimicrobial effects of composites based on multi-substituted hydroxyapatite and silver nanoparticles. Appl Surf Sci. 2014; 298:225-35.
Ai M, Du Z, Zhu S, Geng H, Zhang X, Cai Q et al. Composite resin reinforced with silver nanoparticles–laden hydroxyapatite nanowires for dental application. Dent Mater. 2017; 33(1):12-22.
Yoon KY, Hoon Byeon J, Park JH, Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ. 2007; 373(2-3):572-5.
Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008; 4(3):707-16.
Gutiérrez MF, Malaquias P, Matos TP, Szesz A, Souza S, Bermudez J et al. Mechanical and microbiological properties and drug release modeling of an etch-and-rinse adhesive containing copper nanoparticles. Dent Mater. 2017; 33(3):309-20.
Sun L, Chow LC. Preparation and properties of nano-sized calcium fluoride for dental applications. Dent Mater. 2008; 24(1):111-6.
Jeong SH, Hong SJ, Choi CH, Kim BI. Effect of new dentifrice containing nano-sized carbonated apatite on enamel remineralization. Key Eng Mater. 2007; 330-322:291-4.
Roveri N, Battistella E, Foltran I, Foresti E, Iafisco M, Lelli M. Synthetic biomimetic carbonate-hydroxyapatite nanocrystals for enamel remineralization. Adv Mat Res. 2008; 47-50:821-4.
Jeong SH, Jang SO, Kim KN, Kwon HK, Park YD, Kim BI. Remineralization potential of new toothpaste containing nano-hydroxyapatite. Key Eng Mater. 2006; 309-11:537-40.
Lv KL, Zhang JX, Meng XC, Li XY. Remineralization effect of the Nano-HA toothpaste on artificial caries. Key Eng Mater. 2007; 330-2:267-70.
Besinis A, van Noort R, Martin N. Infiltration of demineralized dentin with silica and hydroxyapatite nanoparticles. Dent Mater. 2012; 28(9):1012-23.
Vollenweider M, Brunner TJ, Knecht S, Grass RN, Zehnder M, Imfeld T et al. Remineralization of human dentin using ultrafine bioactive glass particles. Acta Biomater. 2007; 3(6):936-43.
Kishen, A, Shi Z, Shrestha A, Neoh KG. An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. J Endod. 2008; 34(12):1515-20.
Saboktakin MR, Tabatabaie RM, Maharramov A, Ramazanov MA. Development and in vitro evaluation of thiolated chitosan--poly(methacrylic acid) nanoparticles as a local mucoadhesive delivery system. Int J Biol Macromol. 2011; 48(3):403-7.
Botelho MA, Martins JG, Ruela RS, Queiroz DB, Ruela WS. Nanotechnology in ligature-induced periodontitis: protective effect of a doxycycline gel with nanoparticles. J Appl Oral Sci. 2010; 18(4):335-42.
Kasaj A, Röhrig B, Zafiropoulos GG, Willershausen B. Clinical evaluation of nanocrystalline hydroxyapatite paste in the treatment of human periodontal bony defects--a randomized controlled clinical trial: 6-month results. J Periodontol. 2008; 79(3):394-400.
Chitsazi MT, Shirmohammadi A, Faramarzie M, Pourabbas R, Rostamzadeh An. A clinical comparison of nano-crystalline hydroxyapatite (Ostim) and autogenous bone graft in the treatment of periodontal intrabony defects. Med Oral Patol Oral Cir Bucal. 2011;
(3):448-53.
Chakraborti M, Jackson JK, Plackett D, Brunette DM, Burt HM. Drug intercalation in layered double hydroxide clay: application in the development of a nanocomposite film for guided tissue regeneration. Int J Pharm. 2011; 416(1):305-13.
Kanaparthy R, Kanaparthy A. The changing face of dentistry: nanotechnology. Int J Nanomedicine. 2011; 6:2799-804.
Mitchell JC, Musanje L, Ferracane JL. Biomimetic dentin desensitizer based on nano-structured bioactive glass. Dent Mater. 2011; 27(4):386-93.
Lavenus S, Berreur M, Trichet V, Pilet P, Louarn G, Layrolle P. Adhesion and osteogenic differentiation of human mesenchymal stem cells on titanium nanopores. Eur Cell Mater. 2011; 22:84-96.
Dong W, Zhang T, Epstein J, Cooney L, Wang H, Li Y et al. Multifunctional nanowire bioscaffolds on titanium. Chem Mater. 2007; 19(18):4454-9.
Sadurní N, Solans C, Azemar N, García-Celma MJ. Studies on the formation of O/W nano-emulsions, by low-energy emulsification methods, suitable for pharmaceutical applications. Eur J Pharm Sci. 2005; 26(5):438-45.
Simonetti MdosPB, de Andrade MP. Anestésicos locais e opióides encapsulados em lipossoma: um avanço farmacotecnico em progresso. Rev Bras Anestesiol. 1996; 46(1):35-42.
Ueno T, Tsuchiya H, Mizogami M, Takakura K. Local anesthetic failure associated with inflammation: verification of the acidosis mechanism and the hypothetic participation of inflammatory peroxynitrite. J Inflamm Res. 2008;1:41-8.
Franz-Montan M, Silva AL, Cogo K, Bergamaschi Cde C, Volpato MC, Ranali J et al. Liposome-encapsulated ropivacaine for topical anesthesia of human oral mucosa. Anesth Analg. 2007; 104(6):1528-31.
Franz-Montan M, Silva AL, Fraceto LF, Volpato MC, Paula Ed, Ranali J et al. Liposomal encapsulation improves the duration of soft tissue anesthesia but does not induce pulpal anesthesia. J Clin Anesth. 2010; 22(5):313-7.
Ribeiro LN, Franz-Montan M, Breitkreitz MC, Alcântara AC, Castro SR, Guilherme VA et al. Nanostructured lipid carriers as robust systems for topical lidocaine-prilocaine release in dentistry. Eur J Pharm Sci. 2016; 93:192-202.
Holpuch AS, Hummel GJ, Tong M, Seghi GA, Pei P, Ma P et al. Nanoparticles for local drug delivery to the oral mucosa: proof of principle studies. Pharm Res. 2010; 27(7):1224-36.
Silva L, Coutinho A, Fedorov A, Prieto M. Competitive binding of cholesterol and ergosterol to the polyene antibiotic nystatin. A fluorescence study. Biophys J. 2006; 90(10):3625-31.
Iamskov IA, Kuskov AN, Babievskiĭ KK, Berezin BB, Kraiukhina MA, Samoĭlova NA et al. [New liposomal forms of antifungal antibiotics, modified by amphiphilic polymers]. Prikl Biokhim Mikrobiol. 2008; 44(6):688-93.
Ng AW, Wasan KM, Lopez-Berestein G. Development of liposomal polyene antibiotics: an historical perspective. J Pharm Pharm Sci. 2003;6(1):67-83.
De Logu A, Fadda AM, Anchisi C, Maccioni AM, Sinico C, Schivo ML et al. Effects of in vitro activity of miconazole and ketoconazole on phospholipid formulations. J Antimicrob Chemother. 1997; 40(6):889-93.