Análisis Bioquímico de Diferentes Conexiones Implante-Pilar en la Rehabilitación Protésica del Maxilar Anterior: un Estudio de Elementos Finitos

Autores/as

  • Cássia Bellotto Corrêa PhD, Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Univ Estadual Paulista, UNESP, Arararaquara- SP, Brazil
  • Rogério Margonar PhD, Department of Health Sciences, Implantology Post Graduation Course, School of Dentistry, University Center of Araraquara-UNIARA, Araraquara - SP, Brazil
  • Pedro Yoshito Noritomi PhD, Renato Archer Center of Information Technology, Campinas - SP, Brazil
  • Suzane Cristina Pigossi PhD, Department of Clinics and Surgery, School of Dentistry, Alfenas Federal University (Unifal-MG), Alfenas - MG, Brazil
  • Luís Geraldo Vaz PhD, Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista, UNESP, Araraquara - SP, Brazil https://orcid.org/0000-0003-0916-1962

DOI:

https://doi.org/10.21270/archi.v11i4.5601

Palabras clave:

Implantes Dentales, Prótesis Dental, Analisis de Elementos Finitos

Resumen

Propósito: Este estudio tuvo como objetivo evaluar, a través del método de elementos finitos 3D, el comportamiento biomecánico de tres tipos diferentes de conexiones protésicas (hexágono externo (EH), hexágono interno (IH) y cono morse (MT)) en prótesis parciales fijas implantosoportadas. (ISFPD) colocado en la región anterior del maxilar. Métodos: Se construyó un modelo anatómico tridimensional (3D) del maxilar anterior utilizando una base de datos de tomografía computarizada. Los implantes se colocaron en las posiciones de los incisivos laterales y los pónticos en las posiciones de los incisivos centrales simulando un ISFPD con cuatro elementos cementados. La rehabilitación protésica se realizó con tres sistemas de implantes de conexiones que incluyen MT, EH e IH. La carga aplicada de 150N se distribuyó en el centro de la superficie palatina de cada diente, con un ángulo de 45° con respecto al eje longitudinal del diente. La distribución de tensión/estrés se analizó en todos los grupos. Resultados: El diseño de la conexión del implante influye en la distribución y la intensidad de la tensión/deformación en el sistema prótesis/implante. La conexión EH promueve un menor desplazamiento de la estructura protésica en el caso estudiado; sin embargo, el tornillo de pilar de esta conexión recibe la mayor parte de la tensión de von Mises del sistema. La conexión MT mostró valores pequeños de tensión de von Mises en el tornillo en comparación con las conexiones tipo EH e IH. Conclusiones: El pilar MT parece ser más ventajoso que las conexiones EH e IH en cuanto a la distribución de tensiones en nuestro modelo de estudio.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Tabata LF, Assuncao WG, Adelino Ricardo Barao V, de Sousa EA, Gomes EA, Delben JA. Implant platform switching: biomechanical approach using two-dimensional finite element analysis. J Craniofac Surg. 2010;21:182.

B alik A, Karatas MO, Keskin H. Effects of different abutment connection designs on the stress distribution around five different implants: a 3-dimensional finite element analysis. J Oral Implantol 2012;38(Spec):491-6.

Garetto LP, Chen J, Parr JA, Roberts WE. Remodeling dynamics of bone supporting rigidly fixed titanium implants: a histomorphometric comparison in four species including humans. Implant Dent. 1995;4:235-43.

Minatel L, Verri FR, Kudo GAH, de Faria Almeida DA, de Souza Batista VE, Lemos CAA, et al. Effect of different types of prosthetic platforms on stress-distribution in dental implant-supported prostheses. Mater Sci Eng C Mater Biol Appl. 2017;71:35-42.

Torcato LB, Pellizzer EP, Verri FR, Falcon-Antenucci RM, Santiago Junior JF, de Faria Almeida DA. Influence of parafunctional loading and prosthetic connection on stress distribution: a 3D finite element analysis. J Prosthet Dent. 2015;114:644-51.

Tsouknidas A, Lympoudi E, Michalakis K, Giannopoulos D, Michailidis N, Pissiotis A, et al. Influence of Alveolar Bone Loss and Different Alloys on the Biomechanical Behavior of Internal-and External-Connection Implants: A Three-Dimensional Finite Element Analysis. Int J Oral Maxillofac Implants. 2015;30:e30-42.

Binon PP. Implants and components: entering the new millennium. Int J Oral Maxillofac Implants. 2000;15:76-94.

Steinebrunner L, Wolfart S, Bossmann K, Kern M. In vitro evaluation of bacterial leakage along the implant-abutment interface of different implant systems. Int J Oral Maxillofac Implants. 2005;20:875-81.

Maeda Y, Satoh T, Sogo M. In vitro differences of stress concentrations for internal and external hex implant-abutment connections: a short communication. J Oral Rehabil. 2006;33:75-8.

Norton MR. An in vitro evaluation of the strength of an internal conical interface compared to a butt joint interface in implant design. Clin Oral Implants Res. 1997;8:290-8.

Pierrisnard L, Renouard F, Renault P, Barquins M. Influence of implant length and bicortical anchorage on implant stress distribution. Clin Implant Dent Relat Res. 2003;5:254-62.

Da Silva EF, Pellizzer EP, Quinelli Mazaro JV, Garcia Junior IR. Influence of the connector and implant design on the implant-tooth-connected prostheses. Clin Implant Dent Relat Res. 2010;12:254-2.

Van Staden RC, Guan H, Loo YC. Application of the finite element method in dental implant research. Comput Methods Biomech Biomed Engin. 2006;9:257-70.

Correa CB, Margonar R, Noritomi PY, Vaz LG. Mechanical behavior of dental implants in different positions in the rehabilitation of the anterior maxilla. J Prosthet Dent. 2014;111:301-9.

Anusavice KJ. Phillip’s science of dental materials. Philadelphia: Saunders; 2012.

Meijer GJ, Starmans FJ, de Putter C, van Blitterswijk CA. The influence of a flexible coating on the bone stress around dental implants. J Oral Rehabil. 1995;22:105-11.

Menicucci G, Mossolov A, Mozzati M, Lorenzetti M, Preti G. Tooth-implant connection: some biomechanical aspects based on finite element analyses. Clin Oral Implants Res. 2002;13:334-41.

Chun HJ, Cheong SY, Han JH, Heo SJ, Chung JP, Rhyu IC, et al. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil. 2002;29:565-74.

Wang RF, Kang B, Lang LA, Razzoog ME. The dynamic natures of implant loading. J Prosthet Dent. 2009;101:359-71.

Pessoa RS, Muraru L, Junior EM, Vaz LG, Sloten JV, Duyck J, et al. Influence of implant connection type on the biomechanical environment of immediately placed implants - CT-based nonlinear, three-dimensional finite element analysis. Clin Implant Dent Relat Res. 2010;12:219-34.

Eraslan O, Aykent F, Yucel MT, Akman S. The finite element analysis of the effect of ferrule height on stress distribution at post-and-core-restored all-ceramic anterior crowns. Clin Oral Investig. 2009;13:223-7.

Morneburg TR, Proschel PA. Measurement of masticatory forces and implant loads: a methodologic clinical study. Int J Prosthodont. 2002;15:20-7.

Nishioka RS, de Vasconcellos LG, de Melo Nishioka GN. Comparative strain gauge analysis of external and internal hexagon, Morse taper, and influence of straight and offset implant configuration. Implant Dent. 2011;20:e24-32.

Saidin S, Abdul Kadir MR, Sulaiman E, Abu Kasim NH. Effects of different implant-abutment connections on micromotion and stress distribution: prediction of microgap formation. J Dent. 2012;40:467-74.

Faegh S, Muftu S. Load transfer along the bone-dental implant interface. J Biomech. 2010;43:1761-70.

Cho SY, Huh YH, Park CJ, Cho LR. Three-Dimensional Finite Element Analysis on Stress Distribution of Internal Implant-Abutment Engagement Features. Int J Oral Maxillofac Implants. 2018;33:319-27.

Akca K, Cehreli MC, Iplikcioglu H. Evaluation of the mechanical characteristics of the implant-abutment complex of a reduced-diameter morse-taper implant. A nonlinear finite element stress analysis. Clin Oral Implants Res. 2003;14:444-54.

Chun HJ, Shin HS, Han CH, Lee SH. Influence of implant abutment type on stress distribution in bone under various loading conditions using finite element analysis. Int J Oral Maxillofac Implants. 2006;21:195-202.

Hanaoka M, Gehrke SA, Mardegan F, Gennari CR, Taschieri S, Del Fabbro M, et al. Influence of implant/abutment connection on stress distribution to implant-surrounding bone: a finite element analysis. J Prosthodont. 2014;23:565-71.

Hansson S. Implant-abutment interface: biomechanical study of flat top versus conical. Clin Implant Dent Relat Res. 2000;2:33-41.

Burguete RL, Johns RB, King T, Patterson EA. Tightening characteristics for screwed joints in osseointegrated dental implants. J Prosthet Dent. 1994;71:592-9.

Jemt T, Book K, Linden B, Urde G. Failures and complications in 92 consecutively inserted overdentures supported by Branemark implants in severely resorbed edentulous maxillae: a study from prosthetic treatment to first annual check-up. Int J Oral Maxillofac Implants. 1992;7:162-7.

Zarb GA, Schmitt A. The longitudinal clinical effectiveness of osseointegrated dental implants: the Toronto study. Part III: Problems and complications encountered. J Prosthet Dent. 1990;64:185-94.

Becker W, Becker BE. Replacement of maxillary and mandibular molars with single endosseous implant restorations: a retrospective study. J Prosthet Dent. 1995;74:51-5.

Jemt T, Linden B, Lekholm U. Failures and complications in 127 consecutively placed fixed partial prostheses supported by Branemark implants: from prosthetic treatment to first annual checkup. Int J Oral Maxillofac Implants. 1992;7:40-4.

Sutter F, Weber H, Sorenson J, Belser U. The new restorative concept of the ITI dental implant system: design and engineering. Int J Periodont Restor Dent. 1993;13:408–31.

Schwarz MS. Mechanical complications of dental implants. Clin Oral Implants Res. 2000;11 Suppl 1:156-8.

Tsuge T, Hagiwara Y. Influence of lateral-oblique cyclic loading on abutment screw loosening of internal and external hexagon implants. Dent Mater J. 2009;28:373-81.

Anitua E, Tapia R, Luzuriaga F, Orive G. Influence of implant length, diameter, and geometry on stress distribution: a finite element analysis. Int J Periodontics Restorative Dent. 2010;30:89-95.

Li T, Kong L, Wang Y, Hu K, Song L, Liu B, et al. Selection of optimal dental implant diameter and length in type IV bone: a three-dimensional finite element analysis. Int J Oral Maxillofac Surg. 2009;38:1077-83.

Publicado

2022-01-04

Cómo citar

Corrêa, C. B., Margonar, R., Noritomi, P. Y., Pigossi, S. C., & Vaz, L. G. (2022). Análisis Bioquímico de Diferentes Conexiones Implante-Pilar en la Rehabilitación Protésica del Maxilar Anterior: un Estudio de Elementos Finitos. ARCHIVES OF HEALTH INVESTIGATION, 11(4), 646–652. https://doi.org/10.21270/archi.v11i4.5601

Número

Sección

Original Articles