Síntesis de un Gel Experimental con Nanopartículas de Plata Sintetizadas Biológicamente utilizadas en la Ruptura de Biopelícula

Autores/as

  • Karina Eleonara Klein Graupen Roldan Antunes Department of Orthodontics, Araras Dental School, Herminio Ometto Foundation, FHO, Araras - SP, Brazil https://orcid.org/0009-0007-2932-5844
  • Daniel Navarro Rocha Department of Mechanical and Materials Engineering, Military Institute of Engineering- IME, Rio de Janeiro - RJ, Brazil
  • Larissa Marcelino Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School. State University of Campinas - UNICAMP, SP, Brazil https://orcid.org/0000-0002-7199-9013
  • Roberto do Nascimento Silva Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900 - SP, Brazil https://orcid.org/0000-0002-8992-7130
  • Ana Paula Nogueira Federal University of São Paulo, Department of Science and Technology, São José dos Campos - SP, Brazil https://orcid.org/0000-0002-5322-998X
  • Analia Gabriella Borges Ferraz Facury Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School. State University of Campinas - UNICAMP, SP, Brazil https://orcid.org/0000-0001-9255-3937
  • Ana Rosa Costa Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School. State University of Campinas - UNICAMP, SP, Brazil Department of Orthodontics, Araras Dental School, Herminio Ometto Foundation, FHO, Araras - SP, Brazil https://orcid.org/0000-0002-1020-3210
  • José Guilherme Neves Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School. State University of Campinas - UNICAMP, SP, Brazil Department of Orthodontics, Araras Dental School, Herminio Ometto Foundation, FHO, Araras - SP, Brazil https://orcid.org/0000-0003-1613-8496

DOI:

https://doi.org/10.21270/archi.v12i7.5804

Palabras clave:

Nanopartículas, Ortodoncía, Plata, Streptococcus mutans, Chitosana

Resumen

El objetivo del presente estudio fue sintetizar y evaluar las propiedades biológicas y mecánicas de un gel polimérico asociado a nanopartículas de plata. Los geles estaban compuestos por un complejo biopolímero polielectrolítico Chitosan-Xanthan (CX) asociado o no a nanopartículas de plata (Agnano), los cuales se agruparon en los siguientes grupos: G1) Gel CX; G2) CX Gel + 5% Agnano; G3) CX Gel + 2,5% Agnano; 4) CX Gel + 1,25% Agnano. La caracterización de nanopartículas se realizó mediante análisis dinámico de dispersión de luz, y de geles mediante análisis reológico. La actividad antimicrobiana para Streptococcus mutans se realizó por el método del halo de inhibición. Los resultados obtenidos de DLS mostraron un potencial Zeta de -30 mV y un tamaño de partícula de aproximadamente 100 nm. El análisis reológico muestra que todos los grupos tenían una viscosidad entre 5 y 6,5 Pa, y con el aumento del esfuerzo cortante, la viscosidad de todos los grupos disminuyó. Para el análisis de la actividad antimicrobiana, el potencial antimicrobiano se observó solo para el gel CX que contenía 5% de Agnano. Por lo tanto, se concluye que el gel que contiene 5% de Agnano es prometedor para su uso en pacientes de ortodoncia con una alta tasa de placa bacteriana y puede usarse para prevenir lesiones de manchas blancas durante y después del tratamiento.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Oz AZ, Oz AA, Yazıcıoglu S. In vivo effect of antibacterial and fluoride-releasing adhesives on enamel demineralization around brackets: A micro-CT study. Angle Orthod. 2017;87(6):841-46.

Krasniqi S, Sejdini M, Stubljar D, Jukic T, Ihan A, Aliu K et al. Antimicrobial Effect of Orthodontic Materials on Cariogenic Bacteria Streptococcus mutans and Lactobacillus acidophilus. Med Sci Monit Basic Res. 2020;26:e920510.

Jing D, Hao J, Shen Y, Tang G, Lei L, Zhao Z. Effect of fixed orthodontic treatment on oral microbiota and salivary proteins. Exp Ther Med. 2019;17(5):4237-243.

Zhang J, Lynch RJM, Watson TF, Banerjee A. Remineralisation of enamel white spot lesions pre-treated with chitosan in the presence of salivary pellicle. J Dent. 2018;72:21-8.

Fernández-Ferrer L, Vicente-Ruíz M, García-Sanz V, Montiel-Company JM, Paredes-Gallardo V, Almerich-Silla JM et al. Enamel remineralization therapies for treating postorthodontic white-spot lesions: A systematic review. J Am Dent Assoc. 2018;149(9):778-86.e2.

Liu Y, Zhang L, Niu LN, Yu T, Xu HHK, Weir MD et al. Antibacterial and remineralizing orthodontic adhesive containing quaternary ammonium resin monomer and amorphous calcium phosphate nanoparticles. J Dent. 2018;72:53-63.

Qin D, Wang Y, Levey C, Ngan P, He H, Hua F; Core Outcome Set for trials on the prevention and treatment of enamel White Spot Lesions (COS-WSL) group. Protocol for the development of a Core Outcome Set for trials on the prevention and treatment of Orthodontically induced enamel White Spot Lesions (COS-OWSL). Trials. 2021;22(1):507.

Nam HJ, Kim YM, Kwon YH, Kim IR, Park BS, Son WS et al. Enamel Surface Remineralization Effect by Fluorinated Graphite and Bioactive Glass-Containing Orthodontic Bonding Resin. Materials (Basel). 2019;12(8):1308.

Lale S, Solak H, Hınçal E, Vahdettin L. In Vitro Comparison of Fluoride, Magnesium, and Calcium Phosphate Materials on Prevention of White Spot Lesions around Orthodontic Brackets. Biomed Res Int. 2020;2020:1989817.

Ramburrun P, Pringle NA, Dube A, Adam RZ, D'Souza S, Aucamp M. Recent Advances in the Development of Antimicrobial and Antifouling Biocompatible Materials for Dental Applications. Materials (Basel). 2021;14(12):3167.

Allaker RP, Yuan Z. Nanoparticles and the control of oral biofilms. Nanobiomaterials Clin Dent. 2019:243–75.

Zakrzewski W, Dobrzynski M, Dobrzynski W, Zawadzka-Knefel A, Janecki M, Kurek K et al. Nanomaterials Application in Orthodontics. Nanomaterials (Basel). 2021;11(2):337.

Bapat RA, Chaubal TV, Joshi CP, Bapat PR, Choudhury H, Pandey M et al. An overview of application of silver nanoparticles for biomaterials in dentistry. Mater Sci Eng C Mater Biol Appl. 2018;91:881-98.

Jasso-Ruiz I, Velazquez-Enriquez U, Scougall-Vilchis RJ, Morales-Luckie RA, Sawada T, Yamaguchi R. Silver nanoparticles in orthodontics, a new alternative in bacterial inhibition: in vitro study. Prog Orthod. 2020;21(1):24.

Fernandez CC, Sokolonski AR, Fonseca MS, Stanisic D, Araújo DB, Azevedo V et al. Applications of Silver Nanoparticles in Dentistry: Advances and Technological Innovation. Int J Mol Sci. 2021;22(5):2485.

Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020;10(20):8996-9031.

Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnology. 2018;16(1):14.

Kapoor RT, Salvadori MR, Rafatullah M, Siddiqui MR, Khan MA, Alshareef SA. Exploration of Microbial Factories for Synthesis of Nanoparticles - A Sustainable Approach for Bioremediation of Environmental Contaminants. Front Microbiol. 2021;12:658294.

Vahabi K, mansoori GA, Karimi S. Biosynthesis of AgNPs by fungus Trichoderma Reesei (A Route for Large-Scale Production of AgNPs). Insciences J. 2011;1(1):65-79.

Neves JG, Marcato PD, de Paula E Silva FWG, Mantovani CPT, Prado HS, Aires CP et al. Synthesis and characterization of an experimental primer containing chitosan nanoparticles - Effect on the inactivation of metalloproteinases, antimicrobial activity and adhesive strength. Arch Oral Biol. 2021;127:105148.

Bellini MZ, Caliari-Oliveira C, Mizukami A, Swiech K, Covas DT, Donadi EA et al. Combining xanthan and chitosan membranes to multipotent mesenchymal stromal cells as bioactive dressings for dermo-epidermal wounds. J Biomater Appl. 2015;29(8):1155-66.

Murakami M, Nishi Y, Fujishima K, Nishio M, Minemoto Y, Kanie T et al. Impact of Types of Moisturizer and Humidity on the Residual Weight and Viscosity of Liquid and Gel Oral Moisturizers. J Prosthodont. 2016;25(7):570-75.

Algebaly AS, Mohammed AE, Abutaha N, Elobeid MM. Biogenic synthesis of silver nanoparticles: Antibacterial and cytotoxic potential. Saudi J Biol Sci. 2020;27(5):1340-51.

Farhadi S, Ajerloo B, Mohammadi A. Green Biosynthesis of Spherical Silver Nanoparticles by Using Date Palm (Phoenix Dactylifera) Fruit Extract and Study of Their Antibacterial and Catalytic Activities. Acta Chim Slov. 2017;64(1):129-43.

Mohammed AE, Al-Qahtani A, Al-Mutairi A, Al-Shamri B, Aabed KF. Antibacterial and Cytotoxic Potential of Biosynthesized Silver Nanoparticles by Some Plant Extracts. Nanomaterials (Basel). 2018;8(6):382.

Masoud AI, Alshams FA. The use of decorative braces in Jeddah, Saudi Arabia. J Orthod Sci. 2020;9:18.

Karakuş S. Preparation and rheological characterization of Chitosan-Gelatine@ZnO-Si nanoparticles. Int J Biol Macromol. 2019;137:821-28.

Facchinatto WM, Fiamingo A, Dos Santos DM, Campana-Filho SP. Characterization and physical-chemistry of methoxypoly(ethylene glycol)-g-chitosan. Int J Biol Macromol. 2019;124:828-37.

Bombaldi de Souza RF, Bombaldi de Souza FC, Thorpe A, Mantovani D, Popat KC, Moraes ÂM. Phosphorylation of chitosan to improve osteoinduction of chitosan/xanthan-based scaffolds for periosteal tissue engineering. Int J Biol Macromol. 2020;143:619-32.

Yin IX, Zhao IS, Mei ML, Li Q, Yu OY, Chu CH. Use of Silver Nanomaterials for Caries Prevention: A Concise Review. Int J Nanomedicine. 2020;15:3181-3191.

Urzedo AL, Gonçalves MC, Nascimento MHM, Lombello CB, Nakazato G, Seabra AB. Multifunctional alginate nanoparticles containing nitric oxide donor and silver nanoparticles for biomedical applications. Mater Sci Eng C Mater Biol Appl. 2020;112:110933.

Fakhruddin KS, Egusa H, Ngo HC, Panduwawala C, Pesee S, Samaranayake LP. Clinical efficacy and the antimicrobial potential of silver formulations in arresting dental caries: a systematic review. BMC Oral Health. 2020;20(1):160.

Scarpelli BB, Punhagui MF, Hoeppner MG, Almeida RSC, Juliani FA, Guiraldo RD, Berger SB. In Vitro Evaluation of the Remineralizing Potential and Antimicrobial Activity of a Cariostatic Agent with Silver Nanoparticles. Braz Dent J. 2017;28(6):738-43.

Publicado

2023-07-12

Cómo citar

Antunes, K. E. K. G. R., Rocha, D. N., Marcelino, L., Silva, R. do N., Nogueira, A. P., Facury, A. G. B. F., Costa, A. R., & Neves, J. G. (2023). Síntesis de un Gel Experimental con Nanopartículas de Plata Sintetizadas Biológicamente utilizadas en la Ruptura de Biopelícula. ARCHIVES OF HEALTH INVESTIGATION, 12(7), 1482–1487. https://doi.org/10.21270/archi.v12i7.5804

Número

Sección

Original Articles